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Abstract. A new ansatz is proposed to implement finite size scaling analysis of the dielectric 
breakdown model. Calculations on very small cells already allow to obtain good qualitative 
determinations of the fractal dimensions d in a wide range of dimensionalities and model 
parameters. Exact enumerations or high accuracy Monte Carlo calculations on larger cells 
( S I 2  x 12) in d = 2  show a remarkable degree of convergence towards values known from 
large scale simulations for d, and, to a lesser extent, for the multifractal dimension D ( q )  
with q a - I .  General difficulties inherent to Monte Carlo determinations of D(q) for 
negative q are also pointed out. For calculating the electrostatic potential inside these cells 
we use a new exact and fast algorithm, explained in detail in the appendix 

!* !!!"ctie!! 

Dielectric breakdown [ 11 (DBM) and diffusion limited aggregation [Z] (DLA) are among 
the most extensively studied models of fractal growth. In spite of many efforts, up to 
now these models could be treated mostly numerically [3]. From a more theoretical 
point of view, there have of course been several attempts to develop analytical 
approaches to these problems. Among them the most close in spirit to the method we 
present here, are certainly those of the real space renormalization group (RSRG) type 
[4-91. In addition we should also mention the rather promising approach by Pietronero 
er al [IO] based on a fixed scale transformation. This last method, however, is only 
implicitly based on scale invariance and relies essentially on another invariance prin- 
ciple, so that it should not be regarded as belonging to the RSRG category. 

The general problem with RSRG approaches is that they are often rather qualitative, 
and do not allow systematic improvement, being based on uncontrollable apprnxima- 
tions. That is the reason why, very often, one has to rely on more quantitative scaling 
approaches, like phenomenological renormalization [ 1 I], when a n  accurate determina- 
tion of scaling properties is needed. 

When trying to apply similar strategies to fractal growth problems like DBM, one 
meets further serious difficulties. The real goal of an RSRG approach in this case would 
be to map the growth rules at a given scale into new rules at a coarse grained scale. 

11 Also at lnstituto Nazionale di Fisica Nucleare. Sezione di Padova, Italy. 
7 Also at International School for Advanced Studies, 1-34014 Trieste. Italy, and Unit& di Padova, Gruppo 
Nazionale di Stcuttura della Materia del Consiglio Nazionale delle Ricerche, Padova, Italy. 
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By imposing a fixed point condition for the mapping, consistent with the fact that the 
grown cluster is fractal, one should then be able to determine its fractal dimension. 
This strategy is in principle very ambitious. In practice the very choice of the parameters 
which should determine the growth rules (the type and degree of proliferation, in RG 
language) appears rather arbitrary, and it does not seem possible to go beyond a rather 
qualitative level with similar calculations [4,6,8,9]. 

In the present work a serious effort is made in order to optimally exploit finite size 
scaling (FSS) ideas in the study of the DBM and similar models. Like in the case of 
phenomenological renormalization for, e.g., equilibrium spin problems, our FSS based 
strategy does not meet the difficulty of handling proliferation and has the big advantage 
of allowing, at least in principle, a clear way of systematic improvement of the results, 
i.e. that of increasing the sizes involved in the actual calculations. Below, we make a 
first attempt along this way, and show at the same time how to extract meaningful 
qualitative results also from calculations on systems of very small size. 

2. Finite size scaling on small cells 

A standard formulation of FSS for a model like the DBM is as follows. Consider a finite 
(e.g., square in d = 2 )  region of size L in the space where cluster growth occurs. 
Indicating by N ( L ,  t )  the total number of cluster sites within the box at time t,  we 
expect the following type of homogeneity, for big L and t :  

with z = 4 the fractal dimension of the cluster. Indeed, we must have that N ( m ,  t )  = 
/"N(w, t / F j  but,  oi course, Mjm, t j =  t. in this framework one imagines that the 
growth actually occurs in a space region much bigger than the box of side L. The 
trouble with (2.1) is that it cannot be easily implemented because, e.g., growth has to 
proceed on space (and time) scales much larger than L before the cluster freezes as 
a consequence of screening. Here we substitute (2.1) with another scaling ansatz, which 
avoids these difficulties and is directly inspired by the actual situation realized in 
dieiectric breakdown experiments. 

Suppose that the perimeter of our box of side L corresponds to the external electrode 
and that growth starts from a point electrode in the middle of the box. In this case 
growth will have to stop at  the time by which the first branch of the cluster hits the 
boundary. Indicating by N ( L )  the average number of sites of the c!uster at this 
short-circuiting situation, we expect that N ( L )  should scale simply as Ld, for large L. 
In other words, the scaling occurring in the previous situation for t + 00 and large L 
should reveal the same fractal dimension as the scaling just defined. The advantage is 
that in the latter case we can hope to get meaningful results by restricting the global 
growths completely within the limits of our cells. 

Unless otherwise specified, we will consider here the DBM growth [l]  within cells 
whose boundary is kept at  a fixed potential, say @ = 1. An interior point, playing the 
LUlC U L  ASSU ,U, CIU>LCI gLuwLL1, Ib n c p  nr Y? -" L l Y L l l  U15 J C I 1 1 .  n "L p"1L'L" .I"& "C1Y1.6LL16 

to the cluster, the potential satisfies the discrete Laplace equation, while for those of 
the cluster @ = O .  At each stage of growth one bond is chosen among those on the 
perimeter of the cluster with probability proportional to A@;, where POa is the 
potential drop across the boundary of the cluster, and 7 is a parameter of the model. 

.2 . ., 
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The average number of points in the cluster, N, is obtained by summing the number 
of cluster sites of each possible growth pattern at the moment of breakdown, multiplied 
by the probability of that pattern. 

For relatively small cells such a calculation soon becomes a formidable task, and 
one needs to perform it on the computer, either exactly or by some Monte Carlo 
procedure, as we will discuss below. 

The smallest conceivable cells with which we can try to implement our scaling 

simple. For the first, since the seed point coincides with the unique cell site, and the 
boundary sites are its 2d nearest neighbours, breakdown occurs at the first step of 
growth, and trivially N ( 1 )  = 1. The two-site cell can also be worked out, with one of 
the two sites playing the role of seed, and with the 2(2d - 1) surrounding sites playing 
the role of boundary. The seed site is surrounded by 2d - 1 boundary sites (with a 
potential difference equal to unity) and by the second interior site, with a potential 
Q0 = (2d - 1)/2d (the average of the potentials of its neighbours). If dielectric break- 
down occurs by an immediate growth from the seed to the boundary, we count a single 
site in the final cluster. Only if the initial growth goes to the second site (which happens 
with relative probability a:), we end up with two sites. In this way we get 

any& are the  ne- and ?w~-ni!e r&. For both the ca!cg!a!infi of .N is sti!! extremely 

(2.2) 

It is remarkable that we can obtain already from the above elementary calculations a 
qualitative description of the properties of DBM. Due to the extreme smallness of our 
cells, a meaningful definition of the rescaling factor 1 between them is not possible. 
Some ambiguity in the definition of 1 is always affecting very small and asymmetric 
. . I S  .. I...,..: ...- A .c...:-- . ._._>-_A ~ - m l / d  .... _..c. c..- .L- -- L: :... 
cell caicuLaiiuns. I I I S L C ~ U  vi using a stanwaiu t = L  , we prviii i~vi i i  L ~ I C  airioiguiiy 
with an ad hoc definition of 1. The rescaling can be chosen such that the fractal 
dimension d provided by our scaling exactly coincides with d for 1) =0, as we know 
to be the case (Eden model) [12]. We finally get 

This is an interesting formula, because it includes both d- and ?-dependences. As a 
function of d, for q = 1, e.g., the agreement of this formula with existing estimates is 
rather satisfactory. For d = 2 ,3 , .  . . , 6  we get d = 1.63,2.60,3.58,4.57,. . . respectively, 
to be compared with the corresponding estimates 1.70, 2.51,3.34,4.20,5.3 . . . [3]. As 
a function of 7, at fixed d, the behaviour is also satisfactory for q not too large. For 
q + 00 we do not recover d +  1, because the geometry of the cluster and the choice of 
the starting point do not allow this. Nevertheless, for d = 2, e.g., we get d =  1.812 and 
1.314 for ? = O S  and 2 respectively. These values should be compared with the 
corresponding Monte Carlo estimates d =  1.9 and 1.4 respectively [3]. At fixed 7 we 
get from (2.3) for d +m: 

/.\ 

d =  d( 1 -T) 2d + O ( i ) ,  

It should be noted that for 7 = 1 (DLA) this formula satisfies the exact bound d >  d - 1 
~131.  
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We believe that the result (2.3) is interesting in at least two respects. On one side 
it compares well with similar approximations obtained on a basis different from RG 

114,151. On the other hand it clearly shows that even extremely small scale calculations 
in this field allow to extract a reasonable qualitative description of the fractal properties. 

A more difficult step is that of passing from a qualitative to a more quantitative 
description, without being compelled to resort to brute, large scale calculations. Within 
the context of still qualitatively minded approximations we can mention several results 
obtained along similar lines for clusters with more than two sites in d = 2 and d = 3. 
In these cases one loses the nice possibility of embodying analytically the d-dependence. 
In table 1 some clusters and the corresponding estimates for d are listed. In all these 
cases the calculations were performed analytically and the ad hoc definition of the 
rescaling described above was adopted. 

Table 1. Fractal dimension d from some ma11 cell finite size scalings. (Note: for the 
2 x 2-cell, we took an average over all possible starting points.) All results refer to the case 
? = I .  

Large cell Small cell d ( d = 2 )  d ( d = 3 )  

2 x 2 x 1 ” - ’  2 x I d - ‘  1.59 2.58 
3 x 3  2 x 2  160 

A different possible choice of boundary conditions for the cells are the cylindrical 
ones. In this case one considers all sites on the bottom of the cell as seed sites and 
one puts @ =  1 on the sites of the upper boundary. Laterally periodic boundary 
conditions are used. The result of a four- into a two-site cell rescaling calculation is 
d = 1.76 for d = 2 and q = 1. Also in this case, due to the asymmetry of the cells, it is 
convenient to define I in such a way that the exact result is recovered for q = 0. 

3. Calculations on larger cells 

In order to extend the calculations of the previous section to larger cells, in the hope 
of being able to extract results valid asymptotically for very large cells, we can follow 
several strategies. 

The most simple method consists of a straightforward Monte Carlo generation of 
a large set of DBM realizations in each cell considered, where N ( L )  is then obtained 
as an average over this set. The Monte Carlo procedure consists of choosing at each 
step the next growth site at random between the many candidate sites, with reiative 
probabilities given by their respective values of A@Z. 

For cells that are not too large, this Monte Carlo method can be replaced by an 
exact enumeration of all possible growths up to the breakdown. The enumeration 
procedure is similar to that used in the enumeration of different kinds of walks on a 
lattice [16], except for the fact that the number of possibilities at each step is not fixed 
bui determined by the configuration. T i e  value for N ( i )  is then omainea OY averaging 
N over all configurations at breakdown, with the product of the A@: at each step as 
weight factors. 

When the cells become too large to allow an exact enumeration of all possible 
growth patterns, we have used a combined strategy. We have enumerated all possible 

I _ ~ .  ~ , , ~ ~ ~  ~~ 
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growth patterns consisting of up to No sites (where the maximum acceptable value for 
No depends on the computational capacity), together with the weight factors of these 
patterns. If they break down before N,, is reached, we calculate their contribution to 
N ( L ) .  If the boundary of the cell has not been reached after No steps, we continue 
from that Configuration till breakdown with a Monte Carlo sampling as described 
above. In order to increase the efficiency of the computation, the number of Monte 
Carlo runs for each configuration (and thus the accuracy of the estimate) can, e.g., be 
taken proportional to the weight of the confieuration. 

Whatever the strategy used, we also need an efficient algorithm to calculate the 
potentials @ at the lattice sites for each configuration. Instead of using the standard 
relaxation method [17], we have developed an exact algorithm, based on the linearity 
ofthe problem. In this method a matrix E,  is constructed, containing all the information 
about a resistor network with sites i and j .  Furthermore, each time a new site is added 
to the growth, this results in linking the two sites with a zero resistance (short circuiting 
these sites) and this translates into a readjustment of the matrix B through n ( n +  1)/2 
simple calculations, where n is the number of sites that have to be monitored. Full 
details of this method are given in the appendix. 

We have applied this method first to square cells with site L, using cylindrical 
boundary conditions in one direction, and @ = 0 and @ = 1 on the boundaries in the 
other direction, as already mentioned in the previous section. In these calculations we 
used No = 4, as we made sure that at least 100 000 Monte Carlo runs were performed 
for each cell. If we denote by N ( L ;  q) the average mass of the growth at breakdown 
within a square of side L, for a given q we derive estimates for the fractal dimension 
of the growth d ( q )  from 

The results from our simulations are reproduced in table 2, both for q = 0 and q = 1. 
The values N ( 3 )  and N(4) are exact, coming from a complete enumeration. For the 
other L-values we have estimated the uncertainty on the results by dividing the Monte 

-..,.. 11.1 -,..":..-Ac-- % / , I .  - >  .Le"..-----...""" -C.L-  ~ L ".,.---,.A 2.. ,a",= 1. "alYri> " " L I l l l l r "  I", 1" I". ,,I. L u r  " S , L & S  ,,,a>> "1 L11S p1""L" 0 ,  "I~aLuUxII ",IUS, 

cylindrical conditions within a square ofride L, for 7 = 0 and 1, and corresponding estimates 
for the fractal dimension. Numbers in parentheses indicate uncertainties on last digit. The 
values mentioned far L = m  are linear extrapolations in IIL. 

L L  N ( L ;  0) N ( L ;  11 d(L',L:O) d ( L , L : I )  

2 3.5 2.8922541 
2 3 7.6165 5.3723743 1.91768 1.527 22 
3 4 13.070 (5) 8.370 (3) 1.877 ( I )  1.541 ( I )  
4 5 20.016 (71 11.863 (5)  1.910 (3) 1.563 (3) 
5 6 28.47 (1)  15.99 (5) 1.932 (4) 1.572 (41 
6 7 38.55 (1) 20.198 (7) 1.966 (41 1.594 ( 5 )  
7 8 50.16 (11 25.04 ( I )  1.972 (4)  1.608 (6) 
8 9 63.42 (2) ?O.?O (!! !.??! (4) 1.62 !!! 
9 10 78.11 (2) 35.99 ( I )  1.977 (6) 1.63 (1) 

10 I 1  94.70 (2) 42.08 (2) 2.021 (5) 1.64 (1) 
11 12 112.67 ( 3 )  48.58 (5) 1.997 (6) 1.65 (2) 

m 2.04 (2) 1.72 (4) 
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Carlo runs into, e.g., 10 groups of 10 000 runs each. If the partial results from these 
groups show a variance U, the expected error on the total average is u+/,/D. The 
extrapolations of d in terms of 1/L should he compared with the results obtained by 
Evertsz on large cylindrical cells [181. Due to the fact that the DBM clusters are not 
self-similar but self-affine, our values for d do  not coincide with the box-counting 
dimension D (1.663*0.002 for v =  l ) ,  but they are compatible with the values for 
1 + I / u ,  where U is the scaling exponent for the average height h in terms of N: h - N ” .  

For the same cylindrical cells we have also calculated the average moments M4 of 
the probabilities of all growth sites at breakdown, defined as 

M,, =I P: where P, = A@:/E A@,!, (3.2) 
I 

These M, are known to scale like 

(3.3) 

where D ( q )  is the multifractal dimension [19]. 
For negative q values the moments are dominated by the sites with the smallest 

growth probabilities. If extremely small growth probabilities can be found in configur- 
ations with a very small weight factor, they may he very hard to discover by standard 
Monte Carlo procedures. We have therefore performed the following test to see whether 
the MC moment calculations can he trusted. On cylindrical L x  L cells we calculated 
these moments through a set of 100 000 independent MC runs. The intermediate results 
were collected in three different ways: ( a )  in 1000 sets of 100 runs, ( b )  in 100 sets of 
1000 runs and (c) in 10 sets of 10 000 runs. For each of these subdivisions, we calculated 
the variance of the average results in each set. If we call these variances respectively 
U,,,,,, u,,,,,~ and u,oooo, we should expect that u,oo/u,oooo= (u,oo/u1000)2= 10, at least 
if the results from different runs have a nice statistical distribution. The results of this 
test are reproduced in table 3. This table shows that, while the moments obtained for 
positive q show a good statistical distribution, those for q < -1 clearly do  not have 
this property. Since the u-ratio approaches 1 for large L values, this means that the 
accuracy of a Monte Carlo calculation for these quantities cannot be improved by 
using larger samples! Further evidence of the deficiency of these negative moment 
calculations may be obtained from the ratio between these variances and the average 
value of the moments over the sample of 100000 runs, as shown in table 4. It is only 
for q >  -1 that the variance becomes smaller than the average. Since these effects 
become more pronounced for larger L, this means that one should also seriously 
question the accuracy of previously derived results for negative q values through Monte 

Table 3. Values obtained for oloo/o,oooo on the L x  L cylindrical configuration. for the 
moments M,, 

4 L = 3  L = 4  L = 5  L = 6  L = 7  L = 8  L = 9  

-3 11.10 2.52 1.96 1.03 1.01 1.03 1.47 
-2 11.11 3.88 3.22 1.27 1.12 1.14 2.08 
- I  10.34 7.78 7.56 4.34 3.82 2.81 5.05 

0 10.73 7.92 10.37 10.56 12.26 8.76 11.23 
0.5 10.96 10.49 8.88 11.44 12.73 9.63 11.20 
2 10.81 9.21 10.46 8.80 8.71 13.63 12.63 
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Table 4. Values obtained for ~ , ~ f  Mq on the L x  L cylindrical configuration. 

1287 

-3 0.29 2.67 2.88 2.99 2.97 3.00 2.87 
-2 0.22 1.56 2.13 2.82 2.82 2.96 2.62 
-1  0.13 0.25 0.39 0.71 0.60 1.33 1.09 

a 0.031 0.027 0.024 0.020 0.020 0.018 0.018 
0.5 0.Oii 0.0077 0.0062 0.0049 0.0045 0.004i 0.0037 
2 0.0075 0.0047 0.0047 0.0050 0.0064 0.0070 0.0075 

Carlo calculations on larger systems. Our calculations indicate that the estimates 
obtained for D(q)  with g < - 1  do not converge to a finite value when L increases. 
1,115 C"L*II,III> LLlC CIICUI'aLIULIS uy LCC all" JLd.rr,Gy LLU,. 111 ally CdSC, W G  Ull l l l  1 Y l l l l G i l  

analysis of these q values, except for q = -1.  
-1 through finite size 

scaling (using L and L'). When plotted against 1/ L, these estimates fall nicely on a 
straight line, such that their extrapolations for L+ a can easily be obtained. These 
extrapolations are also included in the table. 

Mu!tif:acta! properties are often expressed in terms of a f c x f o x  {(e) giliing ?he 
fractal dimension of the set of points where the probabilities P,, defined in (3.2). scale 
with an exponent a. An analysis along these lines reproduces qualitatively the left part 
of t h e f ( a )  curve as reproduced, e.g., by Nagatani [7] or by Hayakawa et al [17]; the 
other part of the curve corresponds to negative g values. 

We have also applied our combined enumeration and Monte Carlo computation 
to qgare cells, in which !he fg!! boundary is fixed a! @ = 1 and !he cen!re site at @ = 0 
as seed. For even L, there is no centre site in the strict sense, so we take one of the 
four sites nearest to the centre. We have collected some results in table 6 .  Due to the 
special situation for the even L, the scaling does not work well when an odd L is 
combined with an even L'; therefore we analysed only the even-even and odd-odd 
combinations. Even then we can see in the table that there are large even-odd 
fluctuations in the predictions. One possibility to remedy for these fluctuations is to 

-:_ *-..c--.- .L^ "..,"..,"L:--- L.. r ^ ^  - - A  e."..,".. r ln l  I.. ^^^^  --:. F..-.t."- 

In  table 5 we show the results obtained for D(q) with g 

Table 5. Values obtained from FSS with cylindrical cells of length L and U for the 
multifractal dimensions D(q1, related to the moments of the probability distribution at 
breakdown for = I .  The values mentioned for L= m are linear extrapolations in 1 fL. 

2 3 2.871 1.613 1.308 1.09855 
3 4 3.38 ( I )  1.616 (31 1.199 (21 0.9671 (51 
4 5 3.68 (2)  1.588 (21 1.145 (21 0.8958 (6) 
5 6 3.94 (3) 1.562 (2) 1.1145 (15) 0.8513 (6) 
6 7 4.2 (2)  1.54 (11 1.093 (51 0.822 (21 

8 9 6.3 (6)  1.53 ( I )  1.074 (41 0.775 (31 
9 IO 5.0 (1.5) 1.536 (71 1.063 ( 3 )  0.766 (41 
IO I I  6 (2)  1.550 (51 1.056 (3) 0.748 (31 

7 8 4.0 (31 1.54 (1) 1.086 (51 0.798 (3) 

1.05013 0.98014 
0.9252 ( 5 )  0.8663 ( 5 )  
0.8488 (7) 0.7865 (4) 
0.7981 (7) 0.7296 ( 5 )  
0.765 (2) 0.6925 (20) 

0.706 (3) 0.625 (3) 
0.698 (4) 0.618 (4) 
0.678 (3) 0.595 (4) 

0.734 (3) 0.656 (31 

0.92999 0.892795 
0.822 (1)  0.788 (4) 
0.7431 (51 0.7107 (8)  
0.6852 ( 5 )  0.6541 (7) 
0.648 (21 0.618 (2) 
0.611 (3) 0.581 (3) 
0.578 (3) 0.552 (4) 
0.572 (51 0.541 (7) 
0.550 (41 0.521 (6) 

m 5 ( I )  1.47 ( 3 )  1.005 (3) 0.63 ( I )  0.53 ( I )  0.45 ( I )  0.38 ( I )  0.36 ( I )  
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Table 6. Same as in table 2, but for squares with full boundary at = 1 and staning in 
the centre. The values a. contain corrections for the fact that for even L it  is impossible 
to stan really in the centre of the square. 

3 4.018 
4 5.652 

3 5 9.473 
4 6 12.275 
5 7 17.868 
6 8 22.006 
7 9 29.588 
8 10 35.160 

3.488 
4.546 
7.287 1.679 1.442 
8.864 1.912 1.647 1.802 1.525 

12.338 1.886 1.565 
14.390 2.029 1.684 1.968 1.612 
18.677 2.007 1.650 
21.180 2.100 1.732 2.063 1.684 

add 0.5 to all N ( L )  for even L; the seed is indeed half a lattice distance removed from 
the real centre of the square. In table 6 we have included the values for d obtained 
in this way, and we called them d'(L', L; 7). These values interpolate much better 
between the values obtained with odd L and L'. 

From the tables it is clear that the convergence of the results from this second type 
of cells is much slower than that for the cylindrical cells. This may be understood from 
the anisotropies present in the square cells with seed site in the middle. Furthermore, 
the distance between the seed and the @ = 1 boundary is actually L/2 in the second 
type of cells, while it is L in the cylindrical cells. We have also performed some 
calculations on the moments M, for this second type of cells. Again, the convergence 
is much worse than for the cylindrical cells, although the corresponding values for the 
dimensionalities D ( q )  have the same order of magnitude. 

The general conclusion from our tables is rather clear. They prove that it is indeed 
possible to obtain very good estimates on the fractal properties of the DBM through 
the finite size scaling method, without the need to perform Monte Carlo calculations 
on very large systems. Our relatively small systems do already give estimates for d that 
lie well within the nowadays accepted range of values. Convergence is remarkably 
better for the cells with cylindrical configuration. The values for the multifractal 
exponents D, converge slower than those for the fractal dimensions, as could be 
expected. The estimates obtained for them, however, are in full qualitative agreement 
with the behaviour obtained for this function by Hayakawa et al[17] and they do  not 
conform with the conjecture that D ( q ) S l  [21]. We also conclude that it is very 
dangerous to estimate negative moments through Monte Carlo calculations; only the 
use of small cells allows us here to study the distribution of the estimates over such a 
large sample of runs. 

Appendix. Construction of the resistivity matrix 

In order to obtain an accurate and efficient method for calculating the electrostatic 
potential @ on the sites of a resistor network, we need to invert the method proposed 
by Derrida et al [22] in which a matrix A is constructed relating the currents injected 
at lattice sites j to the resulting potentials at sites k by 
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Such a matrix A in itself is not very useful for our purpose; imposing that an internal 
site of the lattice has no current leads to the discrete Laplace equation expressing that 
Qj is the average of the Qi at  the neighbouring sites i of j. This is the equation used 
in the relaxation method. What we need is an expression for aj in terms of the I*;  we 
thus need the inverse of A. 

Since a constant choice for Q k  leads to zero currents, the matrix A is singular and 
does not have a straightforward inverse. This can he solved by choosing an arbitrary 
!zttice site tc be fixed zt Q = 0. This site drips not hiye tn be inc!cded in ncr index set 
{ j } ;  due to charge conservation its current will have to compensate X I,. A natural 
choice for this site in the DBM simulations is the central seed for the cluster growth. 
From now on, we will call this site the seed site. 

For the remaining sites in our system, we can now try to construct the matrix B 
defined by 

(A:) * - V "  r 
W j  = D j k l , .  

The first problem is that we should never try to numerically calculate the matrix 
elements B, for sites belonging to disconnected parts of the lattice, since the correspond- 
ing B values, having the meaning of resistances, will be infinite. The following prescrip- 
tion is only computable for a fully interconnected set of sites. Furthermore, we should 

first contribution of the resistances which link these sites to the rest of the system. 
The algorithm for constructing the resistivity matrix B consisting of three distinct 

parts, each to he repeated as many times as necessary. 
1. The initial step is to include in the index set all sites directly connected through 

some resistances R, to the seed (see figure 1). Since along these resistances we have 
a potential drop a;= R;C (if no other interconnecting resistances are present), we 
obviously have the starting rule for these sites: 

inc!.de the site Indices one by one into our index set, whi!e 2dding to our matrix !he 

B.. Y = R .  I '  (A3) 
2. The addition of a new site i to an already treated configuration of sites will have 

to occur through a resistance link with value R between i and some site j of the 
configuration (see figure 2). This will change the matrix B into in the following way. 
'The current i, entering site i wiii iiow into the system at site j ,  where it wiii be added 
to the current 4.  Thus, for all k (including j )  we may write 

bkj = Bkj. (A41 

_. 

Figure I .  Inclusion of first site. 

Figure 2. Addition of a new site. 
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Furthermore, since Q; = Qj+ I,R, we also have that 

B,, = Bjk ( A 3  

B;; = Bj f R. (A6) 

3. The third operation that we must be able to describe is the addition of a resistance 
R betwen two sites i and j already belonging to the configuration. In order to keep 
the potentials Q k  unchanged, the currents I. and 4 should be changed into i. and [. 
as follows (see figure 3): 

- 

(A7) 
1 
R 1. = I ,  +- (CJj - Q j )  

- 1 
R 

r, = r , + - ( Q j - Q J  

and we need to know how B transforms into E, with 

~ ~ = x  B,,I, =E Ekmim. 
m m 

The result of a straightforward calculation is 

valid for all k and m ( i  and j included). This result is also valid for R=O,  i.e. for 
short-circuiting i and j. 

We should add the following remarks: 
(i) The matrix is symmetric: By = Bjj .  This can be used to save computation time 

or memory capacity. 

Figure 3. Addition of a new resistance. 

(ii) If (as in the DBM) the only constraint is that a given site a (the boundary, for 
example) is kept at unit potential, the only current will be I., and thus for the voltage 
at a :  Qa = 1 = BJ.. The potential at all other sites is then obtained from 

(iii) The net resistivity between sites i and j is given by 

Ro = Bit + Bjj - 28,. (A12) 

In combination with (A10) this leads to the complementary transformation rule 

- ( R~~ - R*, + R , ~  - R , , , ~ ) ~  
4(R + R, )  R k m  = Rkm - 

for the operation described in figure 3. 
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(iv) Equation (A101 can in principle also he applied for R < 0. One might want 
to do this if an existing resistance R between i and j should he deleted, which can be 
achieved by adding a fictional resistance ( - R )  in parallel between the same sites. This 
may, however, lead to infinite matrix elements when a site becomes in this way 
disconnected from the network. 

(v) If one is not really interested in what happens in a subset of the lattice sites 
(where the currents must he zero), one may drop these sites from the calculation, once 

site, its index can, e.g., be re-used for the newly added lattice site; equations (A4) and 
(A51 are then automatically satisfied. Such a procedure, which can lead to an enormous 
reduction of computer savings, leads to the strip transfer method as used by Demda 
et a1 [22]. 

111 t h e i r  link. w i t h  the rpct hnrre haam v e 9 1 & , d  Wh;lP +hp Inct mrirtnnro tn n 
I.._.. ....._ I ...I.. I.._ .1". ..-. ~ V1l.. .-*LII-U. .. ..l._ YY".'.6 . . ~ ~  .yI~ LI~.I~yL'-I .- * 
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